

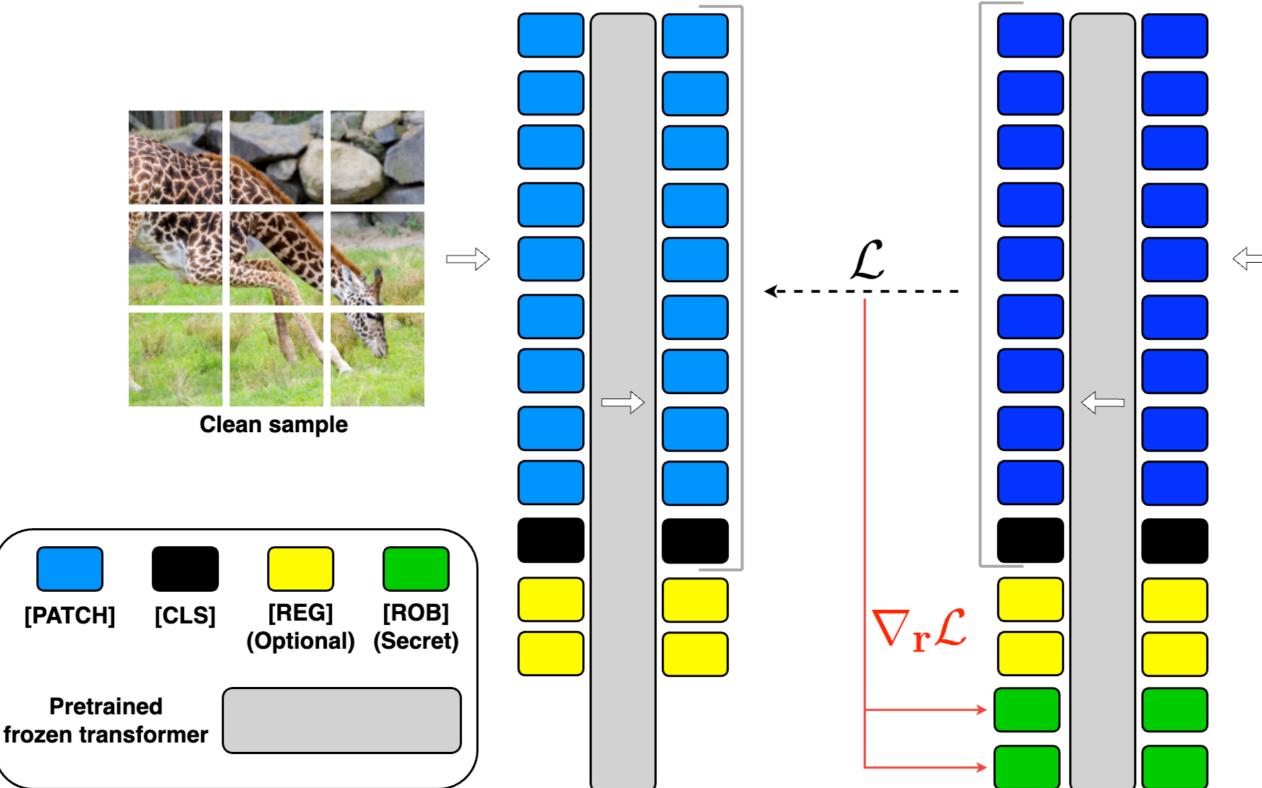
Introduction

Previous works [1-3] have shown that additional learnable tokens can improve performances and even interpretability of transformer models. In this work, we learn more tokens to improve adversarial robustness instead. Across all models, we measure improved

robustness of the features extracted from the backbones, while preserving downstream performances.

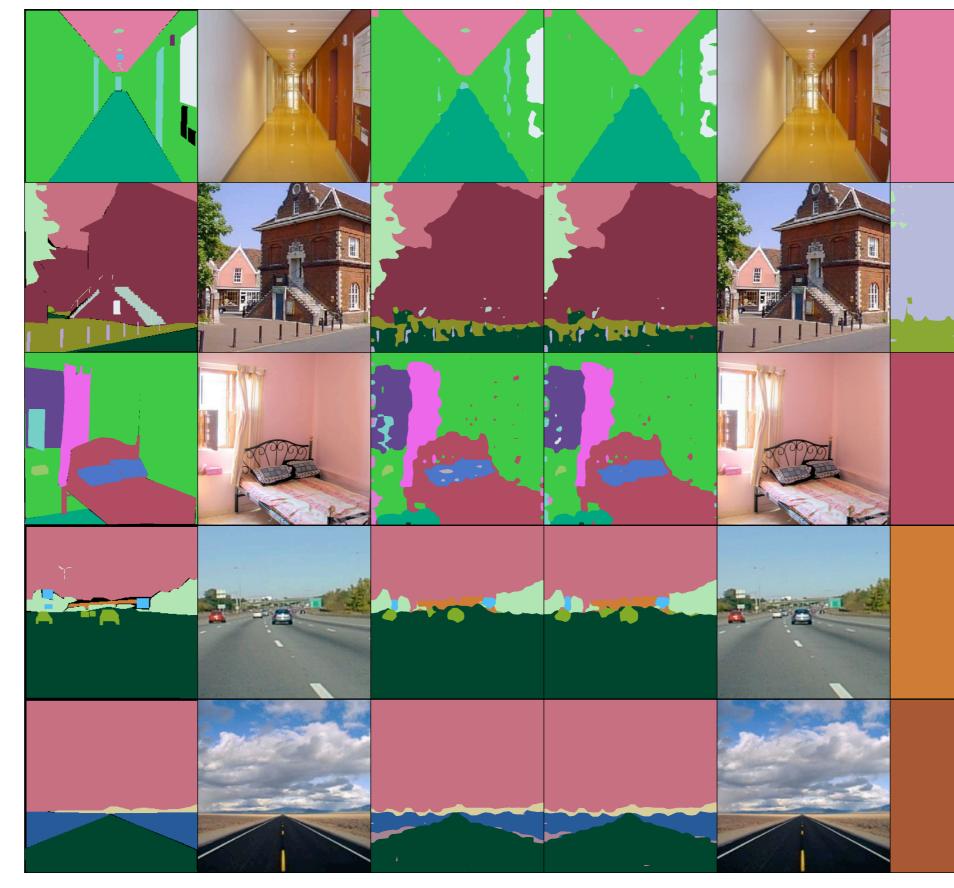
Method

We train robustness tokens such that features are not altered for original or adversarial samples


 $\left[\frac{f([\mathbf{r}, \mathbf{x}]) \cdot f(\mathbf{x})}{\|f([\mathbf{r}, \mathbf{x}])\| \|f(\mathbf{x})\|}\right]$ $\mathcal{L}_{\mathrm{inv}}(\mathbf{r}) =$ $\mathbb{E}_{\mathbf{x} \sim p_{\mathrm{data}}}$ $\mathcal{L}_{\mathrm{adv}}(\mathbf{r}) = \mathop{\mathbb{E}}_{\mathbf{x} \sim p_{\mathrm{data}}} \left[\frac{f([\mathbf{r}, \mathbf{x}^{\mathrm{adv}}]) \cdot f(\mathbf{x})}{\|f([\mathbf{r}, \mathbf{x}^{\mathrm{adv}}])\| \|f(\mathbf{x})\|}
ight]$

With adversarial attacks crafted with:

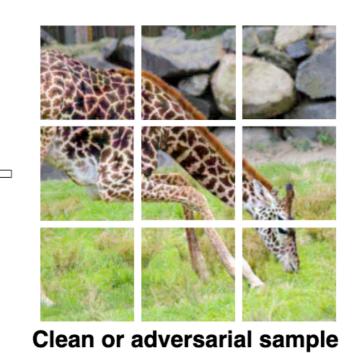
 $\mathcal{L}_{ ext{attack}}(\mathbf{x}^{ ext{adv}}) = rac{f(\mathbf{x}) \cdot f(\mathbf{x}^{ ext{adv}})}{||f(\mathbf{x})|| ||f(\mathbf{x}^{ ext{adv}})||}$


Backbone models are kept fixed throughout, and only tokens are trained.

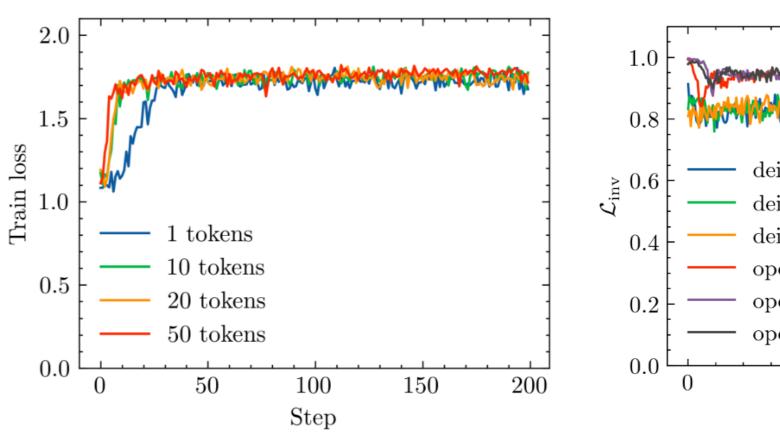
Robustness Tokens: Towards Adversarial Robustness of Transformers Brian Pulfer, Yury Belousov, Slava Voloshynovskiy University of Geneva, Department of Computer Science

Experimental Results

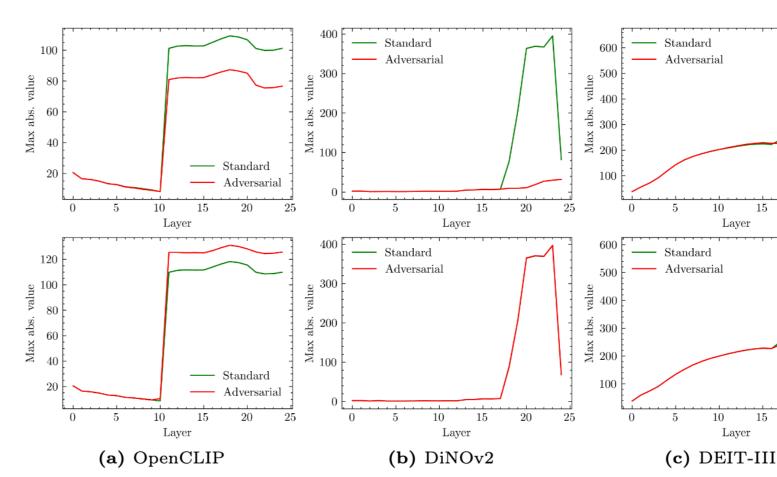
Model	Performance			Robustness		
	Classification	Segmentation	Features	Classification	Segmentation	
DiNOv2-S	80.0	41.0	0.09	0.0	2.8	
DiNOv2-B	83.4	45.1	0.05	0.0	3.1	
DiNOv2-L	85.5	45.1	0.06	0.3	4.5	
DiNOv2-G	85.2	46.6	0.12	0.3	4.7	
${ m DiNOv2-S}+{ m reg}$	79.8	40.4	0.01	0.0	2.1	
${ m DiNOv2-B}+{ m reg}$	83.7	45.8	0.03	0.1	3.0	
${ m DiNOv2-L}+{ m reg}$	86.1	46.6	0.03	0.6	4.6	
${ m DiNOv2-G}+{ m reg}$	86.3	46.8	0.08	0.9	4.2	
DiNOv2-S + rob (ours)	78.5	40.6	0.93	31.9	24.6	
DiNOv2-B + rob (ours)	83.1	45.0	0.92	50.0	23.4	
DiNOv2-L + rob (ours)	84.2	45.5	0.89	62.9	21.2	
DiNOv2-G + rob (ours)	85.6	47.2	0.89	63.1	23.3	
DiNOv2-S + reg + rob (ours)	79.2	40.9	0.93	30.5	22.7	
DiNOv2-B + reg + rob (ours)	83.1	45.8	0.92	49.7	25.9	
DiNOv2-L + reg + rob (ours)	85.9	46.7	0.83	58.7	16.2	
DiNOv2-G + reg + rob (ours)	86.1	47.5	0.90	69.9	25.7	



Label

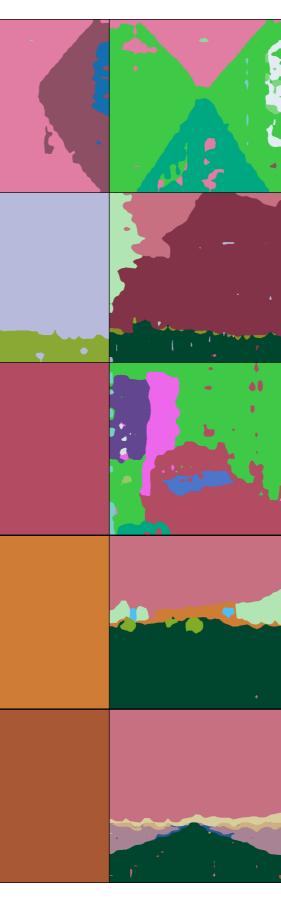

Image

Ours


Adv.

training is quick and cheap

Adversarial attacks often seem to exploit massive activations [4] in transformer models, which robustness tokens learn to restore.



We introduced robustness tokens, learnable tokens that don't damage model performance but improve robustness when kept secret. Robustness tokens are quick and cheap to learn,

making them widely adoptable. Debruce-willis

[1] Timothée Darcet, undefined., et al, "Vision Transformers Need Registers," 2024. [2] Guangxuan Xiao., et al, "Efficient Streaming Language Models with Attention Sinks," 2024. [3] Xiang Lisa Li, Percy Liang, "Prefix-Tuning: Optimizing Continuous Prompts for Generation," 2021. [4] Mingjie Sun, et al, "Massive Activations in Large Language Models," 2024.

Ours

	1.0 0.8	
eit3 base	> 0.6	deit3 base
eit3 huge	$\mathcal{T}^{\mathrm{aqn}}_{\mathcal{T}}$	deit3 huge
eit3 large	0.4	deit3 large
penclip base		openclip base
penclip huge	0.2	- openclip huge
penclip large		openclip large
	0.0	
100 200 300 Step		0 100 200 300 Step

	\mathbf{Model}	$\mathbf{Regular}$	Robustified
	DEIT-III Base	0.16 ± 0.04	0.74 ± 0.03
	DEIT-III Large	0.22 ± 0.03	$\textbf{0.78}\pm0.02$
) 15 20 25 Layer	DEIT-III Huge	0.23 ± 0.03	0.77 ± 0.02
1	OpenCLIP Base	-0.02 ± 0.05	0.86 ± 0.02
	OpenCLIP Large	0.13 ± 0.06	0.91 ± 0.02
	OpenCLIP Huge	0.10 ± 0.07	$\textbf{0.89}\pm0.02$

