
Solving Black-Box Optimization Challenge
via Learning Search Space Partition
for Local Bayesian Optimization

Mikita Sazanovich*, Anastasiya Nikolskaya*, Yury Belousov*, Aleksei Shpilman

December 11, 2020

34th Conference on Neural Information Processing Systems



Introduction: Challenge

The black-box optimization challenge1 focuses on the application of
Bayesian optimization to tuning the hyper-parameters of machine
learning models.

• An unknown objective function f.

• The hyper-parameter configuration space.

• The algorithm runs for K = 16 iterations.

• It suggests B = 8 hyper-parameter sets (or points) xk1, ..., xkB per
iteration and receives the value of the objective function for
each of them, i.e., yk1 = f(xk1), ..., ykB = f(xkB).

• The goal is to minimize the objective function value f.

1https://bbochallenge.com

2/15

https://bbochallenge.com


Introduction: Scoring

Let fa be a minimum value received by an algorithm, fmin be the
expected minimum and fmax the expected maximum values.

The score is computed as follows:
sa = 100 ∗ (1.0− fa−fmin

fmax−fmin ) = 100 ∗ fmax−fa
fmax−fmin .

3/15



Algorithm: High-level Overview

The algorithm consists of several parts, including the initial sampling
method, local Bayesian optimization, and learning search space
partition for it.

Figure 1: An example space partition for a 3D hyper-parameter space.

We get ninit points, rebuild the partition every nrebuild = 4 iterations,
and reset the algorithm every nreset = 8 if no progress is made.

4/15



Algorithm: Learning Search Space Partition

If we construct a space partition at an iteration t (from 1 to K), we
have a dataset Dt = {(x1, y1), ..., (xnt , ynt)}, where nt = t ∗ B. The split
into a left and a right sub-tree is built as follows:

1. Run the KMeans algorithm for 2 clusters base on yi. Lower value
to the left sub-tree, higher – to the right.

2. Using the cluster assignments, we train SVM or k-nearest
methods to predict the assignments.

3. Use the split model to filters the current set of points.

Do it recursively until we reach the maximum depth maxdepth = 5, or
there will not be enough points. Then we select the leftmost leaf.

The process is similar to Wang et al. [2020].

5/15



Algorithm: Local Bayesian Optimization

We use the trust region Bayesian optimization (TURBO) algorithm
from Eriksson et al. [2019] as our local Bayesian optimization model.

Modifications:

1. Add a decay component which shrinks the trust region.

2. The policy is to decay the region side lengths by a constant
factor decay.

3. Start the process if we have already used the half of our
iterations budget, i.e., past 8 iterations.

6/15



Algorithm: Initial Sampling Method

To overcome the problems with random initialization for points, we
consider sampling methods such as:

• Space filling designs: Latin hypercube, Sobol, Halton, Hammersly
(Greenhill et al. [2020]);

• MaxPro (Joseph et al. [2015]).

7/15



Why Random Initialization Is Not Optimal?

There is no guarantee that these points are spread well enough
across all the dimensions

Figure 2: Initial samples over toy 2D example 2

2Comparing initial sampling methods

8/15

https://scikit-optimize.github.io/dev/auto_examples/sampler/initial-sampling-method.html


Impact of Sampling Methods

By taking into account the fact that we know beforehand how many
initial points we want to sample, we can boost score by more than
0.5.

Table 1: Local and remote evaluation of sampling methods.

Method Local mean Local stddev Remote mean Remote stddev

random 95.586 1.273 91.749 0.366
halton 96.215 1.057 92.465 0.132
lhs 96.939 0.662 92.537 0.446

9/15



Impact of Hyper-Parameters

Figure 3: Parallel Categories Diagram Between Hyper-Parameters and
Remote Score.

10/15



Algorithm: Optimization

So, how do we choose hyper-parameters for our algorithm? By
black-box optimization!

We use the multi-task Bayesian optimization method from Letham
and Bakshy [2019] to build a multi-task Gaussian process to combine
the local and remote evaluation results.

Using it, we generate 5 candidates for the pool of finals candidates.

11/15



Algorithm: Candidates

Table 2: Hyper-parameters of finals candidates.

Configuration ninit Split model Split kernel Split regularization decay

Candidate 1 8 SVM rbf 0.002762 0.700
Candidate 2 24 SVM poly 745.322745 0.499
Candidate 3 24 SVM rbf 145.415497 0.416
Candidate 4 24 SVM rbf 165.066908 0.549
Candidate 5 24 SVM rbf 76.7041709 0.677

All candidates use Latin hypercube as the initial sampling method.

12/15



Results: Evaluation

Table 3: Local and remote evaluation of finals candidates.

Configuration Local mean Local stddev Remote mean Remote stddev

Candidate 1 98.239 0.609 96.939 0.300
Candidate 2 98.960 0.305 97.557 0.281
Candidate 3 98.733 0.423 97.451 0.257
Candidate 4 98.828 0.599 97.345 0.167
Candidate 5 98.711 0.338 97.505 0.117

Candidate 2 uses SVM with polynomial kernel and regularization
parameter of 745.322745.

13/15



Results: Competition Finals

We select the Candidate 2 for the competition finals based on the
mean scores using the Wilcoxon signed-rank test with p-value less
than 0.05.

Our approach scores 92.509 in the finals, and ranks 3rd overall!

14/15



Results: What Didn’t Work Well For Us

• Ensemble of algorithms.

• Custom kernels (Matérn kernel 5/2 worked best).

• Custom acquisition functions.

15/15



Thanks! Questions?



References



D. Eriksson, M. Pearce, J. Gardner, R. D. Turner, and M. Poloczek.
Scalable global optimization via local bayesian optimization. In
Advances in Neural Information Processing Systems, volume 32,
2019.

S. Greenhill, S. Rana, S. Gupta, P. Vellanki, and S. Venkatesh. Bayesian
optimization for adaptive experimental design: A review. IEEE
Access, 8:13937–13948, 2020.

V. Joseph, E. Gul, and S. Ba. Maximum projection designs for
computer experiments. Biometrika, 102:371–380, 2015.

B. Letham and E. Bakshy. Bayesian optimization for policy search via
online-offline experimentation. Journal of Machine Learning
Research, 20(145):1–30, 2019.

L. Wang, R. Fonseca, and Y. Tian. Learning search space partition for
black-box optimization using monte carlo tree search. ArXiv,
abs/2007.00708, 2020.

15/15


	Thanks! Questions?
	References

